Найти сумму:1/1+√2+1/√2+√3+.+1/√1970+√1971

Найти сумму:
1/(1+√2)+1/(√2+√3)+...+1/(√1970+1971)

  • нужно избавиться от иррациональности в знаменателе каждой дроби, т.е. нужно домножить и числитель и знаменатель на раность тех членов, что стоят в знаенателе. В итоге, в знаменателе каждой дроби будет стоять разность квадратов, а в числителе разность членов:
    (1-√2)/(1-2)  +   (√2+√3)/(2-3) + ... +   (√1970-√1971)/(1970-1971).
    как видно, знаменатель каждой дроби равен -1, тогда все числители суммируются, и их сумма делится на общий знаменатель "-1":
    (1-√2 + √2+√3+ ... +√1970-√1971)/(-1).
    как видно, в числителе все члены кроме первого и последнего сокращаются, в итог имеем:
    (1-√1971)/(-1) = √1971-1
    ответ:√1971-1